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Abstract

Adaptive mesh re�nement (AMR) permits a computational algorithm to allocate additional

grid resolution when and where it is most needed. A block-structured AMR scheme provides

this capability without sacri�cing the numerical and computational eÆciencies associated

with regular meshes. In this paper we describe an AMR implementation of the discrete

ordinates method for radiative transfer, coupled with an existing projection method for low-
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Mach number ows. The complete algorithm constitutes a conservative scheme for unsteady

combined-mode heat transfer. Results for two- and three-dimensional examples are shown.

Nomenclature

cp speci�c heat at constant pressure, kJ/kg�K

DR reux divergence operator

eij estimate of error in numerical solution in cell ij

_En correction term in multilevel algorithm, J=(m3s)

h enthalpy per unit mass, J=kg

I instantaneous radiant intensity, W=(m2 � Sr)

Înm extension of Im to coarse cells under �ne grids

�In+1m trial solution to Im at new time level

�In+
1=2

m time-averaged intensity over a time step

~Im nonphysical multilevel solution used to enforce energy conservation

Ib blackbody intensity, �bT
4=�

L length of pipe or duct in computational domain

L�x
1 estimate of error in numerical solution over entire domain

` level index

`max level index of �nest re�nement level

m ordinate index

N conduction-radiation parameter, ���=4�bT
3
0
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n time index

n̂ outward unit normal at a boundary

Nu Nusselt number, 2Rqw=�0(Tb � Tw)

P level projection operator

p uid pressure, kg=ms2

Pr Prandtl number, �cp=�

q order of accuracy

r re�nement ratio between levels

r radial (cylindrical) coordinate

qr radiative heat ux, W=m2

qw total heat ux at wall, W=m2

R pipe radius or duct half-width, m

Rm reuxing source at coarse-�ne interfaces

Re Reynolds number, 2R�u0=�

S radiation source term, W=(m3 � Sr)

T temperature, K

Tb bulk temperature, K

Tw wall temperature, K

t time, s

U uid velocity, m=s

u x- component of velocity, m/s
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u0 mean inlet or initial axial velocity, m/s

v y- (r-, if cylindrical) component of velocity, m/s

w z- component of velocity, m/s

wm ordinate weight

x axial coordinate

y; z o�-axis (Cartesian) coordinates

Greek symbols

ÆI`+1m ux register for Im at interface between levels ` and `+ 1 (at level

` resolution)

�t size of a single time step, s

�x;�y width, height of a computational cell

� wall emissivity

� dimensionless time, t�=R2�Pr

� absorption coeÆcient, m�1

�` collection of computation cells at re�nement level `

� thermal di�usivity, W/m�K

@�` boundary between levels `� 1 and `

� dynamic viscosity, kg/m�s

�, �, � direction cosines

� uid density kg=m3

� wall reectivity
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� scattering coeÆcient, m�1

�b Stefan-Boltzmann constant, 5:669� 10�8W/m2 s

� optical thickness, �R


m ordinate direction unit vector

Subscripts and superscripts

(�)ij value at center of cell ij

(�)i;j+1=2
value at upper y-edge of cell ij

(�)n value at time tn

(�)n+1 value at time tn +�t = tn+1

(�)n+1;p predicted value at center of time tn

(�)n+
1=2 value at time tn +�t=2

(�)i+1=2;j
value at upper x-edge of cell ij

0 initial or inlet values

w wall values

Other

h�i average from �ne to coarse level, space only

hh�ii average from �ne to coarse level, space and time

Introduction

The computational modeling of practical combustion applications with limited computer

resources can be made diÆcult by the presence of multiple length scales and high gradients

and by the large number of species in a suÆciently detailed reaction mechanism. In addition,
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the locations of regions with high gradients or small length scales may change over time. An

accurate prediction of a reacting ow may therefore require that the computational grid be

dynamically adapted both in time and space.

Radiative heat transfer is the dominant mode of heat transfer in many combustion appli-

cations. Because it can signi�cantly a�ect temperatures, and, hence, density distributions

and reaction rates, radiative heat transfer may be very inuential in combustion dynam-

ics. Deterministic methods for radiative heat transfer have been formulated for globally

re�ned, nonuniform grids (see, for example, [1]). However, most of these methods use �xed

computational grids and are appropriate only for steady ows.

In this paper we present a method based on a di�erent approach, local adaptive mesh re-

�nement (AMR). We develop an AMR algorithm to solve a system of equations for unsteady

combined-mode heat transfer, using a hierarchical grid structure approach �rst developed

by Berger and Oliger [2] and Berger and Colella [3] for hyperbolic conservation laws in two

dimensions, and extended to three dimensions by Bell et al. [4]. The grid structure is dy-

namic in time and is composed of nested uniform rectangular grids of varying resolution. By

using grids of �ner resolution in both space and time in the regions of most interest, AMR

allows one to model large problems more eÆciently. The integration algorithm on the grid

hierarchy is a recursive procedure in which a coarse grid is advanced, �ne grids are advanced

multiple steps to reach the same time as the coarse grid, and the coarse and the �ne grids

are synchronized. The method is valid for multiple grids on each level and for multiple levels

of re�nement.

The central feature of the algorithm presented here is a new scheme for modeling unsteady

radiative transport with a discrete ordinates method [5, 6, 7] on locally re�ned meshes. This
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scheme incorporates portions of the adaptive mesh re�nement discrete ordinates algorithm for

solving instantaneous or steady-state radiative heat transfer problems described in [8]. The

method is also based on two other earlier works, an incompressible adaptive mesh re�nement

algorithm (IAMR) [9] and a single grid projection method for unsteady low-Mach number

combustion [10].

The remainder of this paper is broken into four sections. The �rst section presents the

governing equations. The second section discusses the numerical method, including a review

of the three works on which it is based. The third section presents and discusses numerical

results computed with the algorithm. The last section summarizes the work and discusses

future directions.

Governing Equations

We make the following simpli�cations for the sake of exposition. The uid is an incompress-

ible single component gas with constant and uniform density, viscosity, thermal di�usivity,

and speci�c heat. Body forces and the heat production due to viscous stress are negligible.

The governing equations for unsteady combined mode heat transfer are then the following:

@U

@t
+ (U � r)U =

1

�
(�rp + �r2U) (1)

@�cpT

@t
+r � �UcpT = �r2T �r � qr (2)

r � U = 0: (3)

Eq. (2) is written in conservative form to underscore the fact that the algorithm described

below conserves enthalpy.
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This paper considers an emitting-absorbing and isotropically scattering gray medium,

although the discrete ordinates method is not restricted to these conditions. For this medium,

the radiative transfer equation (RTE) is

(
 � r) I(
) + (� + �)I(
) = �Ib +
�

4�

Z
4�
I (
0) d
0: (4)

The divergence of the radiative heat ux is given by

r � qr = 4��Ib � �

Z
4�
I (
0) d
0: (5)

For gray surfaces which reect di�usely, the radiative boundary condition for (4) is given by

I(
) = �Ib +
�

�

Z
n̂�
0>0

(n̂ �
0) I(
0)d
0 (6)

for n̂ �
 < 0 where I(
) is the intensity leaving the surface and � is the surface reectivity.

Numerical Algorithm

The algorithm is derived from three previous works: an incompressible adaptive mesh re�ne-

ment (IAMR) algorithm [9], a single grid projection method for low-Mach number combus-

tion [10], and an adaptive mesh re�nement discrete ordinates algorithm for solving instan-

taneous or steady-state radiative heat transfer problems [8]. In the next three subsections,

we briey review these in the context of this paper in order to lay the groundwork for the

discussion of the AMR scheme for unsteady radiative heat transfer in the fourth subsection.

In the �fth subsection, we briey discuss extensions to ows with variable properties.
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AMR for Unsteady Convective Heat Transfer

IAMR [9] solves the unsteady Navier-Stokes equations for incompressible ow (Eqs. (1) and

(3)) along with additional equations for convected and di�used scalars on a block-structured

adaptive mesh. For the discussion here, we consider one such additional equation, the energy

equation for unsteady convective heat transfer:

@�cpT

@t
+r � �UcpT = �r2T: (7)

The IAMR algorithm uses a hierarchical grid structure, which changes dynamically in

time, composed of rectangular, uniform grids of varying resolution. The collection of grids at

a given resolution is referred to as a level, and is denoted by �` for ` 2 f0, 1, 2, . . . g. Level 0

is the coarsest level and covers the entire problem domain. The widths of the cells in the

level ` grids di�er from those at `+ 1 by a even integer factor r` called the re�nement ratio;

r` is typically 2 or 4. In space, the levels are properly-nested, i.e., there must always be a

region at least one cell wide at level ` + 1 separating two levels ` and ` + 2. The algorithm

is implemented for Cartesian (two- and three-dimensional) and axisymmetric coordinates.

For simplicity we restrict most of the discussion in this paper to two-dimensional Cartesian

coordinates.

(It is useful at this point to de�ne a level projection operator P for later use in the paper.

P(�`+1) is the collection of cells at level ` covered by cells at level ` + 1; �` � P(�`+1) is

the portion of level ` that is not covered. Similarly, P(@�`+1) is the collection of level ` cell

edges covered by @�`+1, the border of level `+ 1.)

Two features of the IAMR algorithm must be outlined here in order to show how the

radiative transfer scheme �ts into it. These are the single-level timestep and the adaptive-
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mesh timestep. At a single level `, the basic IAMR timestep to advance the solution from

time tn to time tn + �t = tn+1 proceeds as follows. Convective derivatives (U � rU)n+
1=2

ij

and (r � UT )n+
1=2

ij are computed at cell centers at time n+ 1=2 using a second-order Godunov

method [11] and MAC-projected edge velocities. The solution of Crank-Nicholson di�erence

equations for (7) and (1) then computes T and U at time n+ 1. We solve

�cp

 
T n+1
ij � T n

ij

�t
+ (r � UT )n+

1=2
ij

!
=

�

2

��
r2T

�n
ij
+
�
r2T

�n+1
ij

�
(8)

and a similar equation for velocity. Because the computed velocity does not necessarily

satisfy (3), a projection [12] is applied to correct the velocity and update the pressure.

On the full adaptive mesh, an IAMR timestep consists of separate timesteps on each

of the levels, plus synchronization operations to insure correct behavior at the coarse-�ne

interfaces, plus regridding operations which permit the re�ned grids to track complex and/or

interesting regions of the ow. The ratio of the level ` and the level ` + 1 time steps is r`,

so that the Courant number is roughly the same on all levels. The timestep is a recursive

procedure which proceeds as follows on level `:

1. Advance level `, using boundary information from level `� 1 as needed but ignoring

levels `+ 1 and higher.

2. Advance level ` + 1 r` times. (This involves advancing levels ` + 2 and higher,

recursively.)

3. Synchronize levels ` and `+ 1.

4. At appropriate intervals, generate new level `+ 1 grids.

The synchronization operations serve in part to ensure that the overall timestepping

scheme conserves enthalpy. The operations are otherwise complex and mostly irrelevant to
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the unsteady radiative transfer algorithm. The only part we describe here is the reuxing

operation for the convective terms: During a coarse timestep, both coarse and �ne grids

compute convective uxes on the faces that make up the coarse-�ne interface. Since these

uxes do not match exactly, it is necessary to adjust the ux computed on the coarse grid

to bring it into agreement with the integrated uxes from the �ne grid in order to insure

conservation. For convection, it is then suÆcient to adjust the state in coarse cells bordering

a �ne grid to account for the new ux information. The key data structure for reuxing is

an object called the ux register, that exists at coarse-�ne interfaces at the same resolution

as the coarse grid.

Though the synchronization operations for the elliptic and parabolic portions of the

algorithm are more complicated, they also depend on ux registers for storing information

about various imbalances between coarse and �ne grids. We likewise use these data structures

for storing information relevant to energy conservation in the radiative transfer algorithm.

Single Grid Algorithm for Unsteady Combined Mode Heat Transfer

A single grid projection method for low-Mach number combustion is described in [10]. The

application of this algorithm to Eqs. (1){(5) essentially follows the same steps as the single

level algorithm described above with the following changes. A term approximating r � qr

at time n + 1=2 is subtracted from the right hand side of (8). The resulting temperature

equation is solved in a predictor-corrector fashion in order to time-center the radiative term.

We �rst solve the equation using (r � qr)
n
ij for the half-time divergence. We then compute

(r � qr)
n+1

ij using the temperature just found. We then solve the temperature equation again

using 1=2
�
(r � qr)

n

ij + (r � qr)
n+1

ij

�
:
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AMR Discrete Ordinates for Steady Radiative Transport

We now summarize the AMR discrete ordinates algorithm for solving instantaneous or

steady-state radiative transfer problems presented in [8].

The instantaneous radiation �eld satis�es the radiative transfer equation (4). The discrete

ordinate method is based on a semi-discrete form of this equation,

(
m � r)Im + (�+ �)Im = �Ib +
�

4�

X
m0

wm0Im0 ; (9)

where the continuous dependence of the radiative intensity I on angle is reduced to consid-

eration only of the intensity in the discrete directions 
m. The ordinate weights wm satisfy

P
wm = 4�. The corresponding discretization of (5) is

r � qr =
X
m

wm�(Ib � Im) = 4��Ib �
X

wm�Im: (10)

Discretizing (9) conservatively over cells gives, in Cartesian coordinates,

�m

�x
(Im;i+1=2;j � Im;i�1=2;j) +

�m

�y
(Im;i;j+1=2 � Im;i;j�1=2)

+ (�+ �)Im;ij = Sm(I); (11)

where the emission and scattering sources have been combined into a single source term

Sm(I). The system can be closed by specifying a relationship between the cell and the edge

values, such as the diamond-di�erence or step approximation, but the multilevel algorithm

does not depend on the details of this relationship. Finally, Eq. (6) is discretized to provide

a physical boundary condition at exterior faces, combining the e�ects of emission and di�use

reection at the walls:

Im = �Iwallb +
�

�

X
n̂�


m
0>0

wm0 (n̂ �
m0) Im0 ; n̂ �
m < 0: (12)
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Note that the intensities Im in di�erent ordinate directions are coupled only through

the scattering term and through reection at the boundary. Eqs. (9) and (12) are solved

by repeatedly sweeping through the grid for all ordinate directions. For each ordinate the

sweep proceeds in the direction the radiation is moving. After each sweep the reection and

scattering sources are updated, and the iteration is continued until the system converges. If

scattering is isotropic the source Sm(I) is independent of direction and it is not necessary

to maintain storage for all ordinate directions at once. (It is convenient, though, to allocate

storage for edge uxes at the boundary for all ordinate directions.)

So far we have described the discrete ordinates method as it has been presented in many

earlier sources [5, 6, 7]. The contribution of [8] was to extend this method to the adaptive

grid structure described above. In each uniform region �` of the adaptive mesh, the solution

satis�es equation (11) in the interior and the boundary condition (12) at the walls. At a

coarse-�ne interface @�`+1 we require the coarse ux to be the average of the �ne uxes

across each face:

I`m = hI`+1m i on P(@�`+1). (13)

There are two new features added to the computation in order to deal with the adaptive

mesh. One is the sequencing of grids on each individual level, the other is the method of

cycling between levels to obtain a converged solution. The single-level algorithm is just an

elaboration of that for a single grid: transport sweeps are performed for each ordinate in the

direction of propagation. This imposes an ordering on the grids, since some grids must be

solved before others. In two dimensions, the necessary orderings always exist, and to handle

all ordinate directions a total of four orderings are required (one for transport towards the
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upper right, one towards the lower right, and the reversals of these for transport to the left).

In three dimensions, however, there are cases where an ordering is not possible (this

complication was not mentioned in [8]). We resolve the diÆculty by dividing grids into

pieces. A situation in which the ordering of three adjacent grids is ill-de�ned can be resolved

by dividing any of the three grids into two parts; the resulting four grids can then be ordered

appropriately. A total of eight orderings are required in three dimensions, of which four are

reversals of the other four.

The situation becomes more complicated when multiple levels are involved. Radiation

passes from coarse to �ne grids on the upstream edges of the �ne grids, and from �ne to

coarse grids on the downstream edges. We compute the composite solution across all levels

by again iterating a transport process until the system converges. The process now covers

all active levels, however, in sequence from coarse to �ne and back again.

The details of the multilevel iteration are not as important as the form of the resulting

solution. We obtain at each level ` a solution I`m satisfying (9) on the the exposed portion

of the level �` � P(�`+1), satisfying (12) on physical boundaries, and satisfying (13) on

P(@�`) and P(@�`+1). On interfaces where radiation passes from a coarse grid to a �ne

grid we enforce (13) trivially by setting I`+1m := I`m. Transport sweeps across a level do not

stop when a �ner level is encountered, however. There is therefore an extended solution

Î`m, which agrees with I`m in the exposed region where that exists, but is also de�ned in the

region P(�`+1) under the �ner level.

This extended solution obeys an equation

(
m � r)Îm + (�+ �)Îm = Sm(Î)�DR(
mÆI
`+1
m ) (14)
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over all of �`. The �nal term in this equation can be thought of as feeding �ne grid in-

formation back into the coarse grid. ÆI`+1m is accumulated in ux registers and is de�ned

as

ÆI`+1m = hI`+1m i � Î`m on P(@�`+1). (15)

(Note that ÆI`+1m = 0 along the upstream faces where radiation enters the �ne grid.) DR

is the \reux divergence" operator, which returns the divergence of its argument on the

coarse cells bordering @�`+1. The e�ect of this term is to enforce equation (13) along the

downstream faces where radiation passes from the �ne to the coarse grid.

AMR for Time-dependent Radiative Transfer

The AMR algorithm for unsteady combined-mode heat transfer di�ers from the convective

transport algorithm in two signi�cant ways. The �rst is simply that it incorporates the

predictor-corrector treatment of the temperature equation described above for the single grid

algorithm for combined mode heat transfer. The second di�erence entails the incorporation

of the discrete ordinates algorithm. The remainder of this subsection focuses on this topic.

For a time step in a single level calculation, i.e., one in which `max = 0, we solve for

Im at times n and n + 1, compute (r � qr)
n and (r � qr)

n+1, and then update T in a

time-centered fashion so that the scheme is second-order in time. Note that this update is

automatically conservative, since it involves a simple integration in time of a conservative

radiative transport solution for the entire domain. In the multilevel adaptive algorithm,

however, the domain is not all advanced at a single time step, and imbalances in the radiative

energy �eld develop along level interfaces which must be stored and redistributed properly

in order for the scheme to be conservative.
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The multilevel algorithm is speci�ed recursively by detailing the interactions of a single

level ` with the levels both above and below in the hierarchy, as it advances from time index

n to n+1. (In our description, we do not distinguish time indices on other levels, though we

point out that many �ner-level time steps are involved.) Before we provide the equations,

though, it may be helpful to describe the basic form of the algorithm and the roles played

by the important variables.

We begin a coarse time step by computing a multilevel solution Inm across all the active

levels. Note that this de�nes (r � qr)
n at level ` and all �ner levels. We then advance the

coarse level. We �rst compute a predicted temperature T n+1;p on level `. We next compute

a trial solution �In+1m at the new time, approximating the e�ect of the missing �ner levels

on the coarse region �` �P(�`+1) by reusing the reux contribution from time n. We �nd

(r � qr)
n+1 using the values of �Inm and compute T n+1.

The coarse cells in the �ne region P(�`+1) are eventually overwritten by �ner level data.

Changes to the uid state in this region a�ects cells outside the coarse-�ne interface, however,

so we also modify the enthalpy update in P(�`+1) with an estimate of the e�ects of levels

` + 1 and above. A quantity _E`+1 is computed for this purpose from the time n multilevel

solution, and is used in the coarse enthalpy update. These attempts to anticipate the e�ects

of the �ner levels are used only to improve accuracy|none are needed for conservation, as

that is provided by the synchronization procedure at the end of the coarse time step. Note

that by de�nition, _E`+1 = 0 on �` �P(�`+1) and on �lmax.

Once the trial solution to level ` is in place at time n+1, level `+1 is advanced through r

cycles to bring it up to the same time. (Recall that this procedure in turn involves advancing

and regridding still �ner levels, if any.) Boundary conditions for level `+ 1 are obtained by
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interpolating the level ` solution in both space and time. For the radiative intensity Im we

use piecewise linear interpolation in time and piecewise constant interpolation in space, so

the �ne ux at each incoming face is set to the time-weighted average of the uxes at the

corresponding coarse faces. Outgoing uxes at the coarse-�ne interface are accumulated in

ux registers for use in the synchronization step.

At the end of a coarse time step we perform the radiation synchronization step. (This

step follows all the other AMR synchronizations.) We compute two multilevel solutions. One

is simply the new-time radiative transfer solution In+1m , which is also used as the baseline

solution for the next time step. The other is computed with the accumulated coarse-�ne

ux mismatch used as an additional source term. The di�erence between these solutions is

applied to all active levels to insure conservation of energy. (The correction is computed in

this manner because it can be negative as well as positive, but the method we use to solve

the discrete ordinates equations on each grid has a limiter that disallows negative uxes.)

When more than two levels begin or end together, the multilevel computations are com-

bined. Consider, for example, a calculation with two levels of re�nement. The end of a level

1 timestep requires synchronization of levels 1 and 2. If the level 0 step is also completed,

however, we perform a single synchronization operation for levels 0, 1 and 2 together. Note

that a synchronization of levels 1 and 2 also contributes an increment to the ux registers

at the 0-1 interface, which will be part of the source at the next 0-1-2 synchronization.

We are now ready to formally specify the details of the radiative transfer algorithm

for advancing a level `. Note that the multilevel solve at the initialization step has to be

performed only if level ` was regridded just prior to the beginning of the time step, and then

only if it has not already been done for this time by a still coarser level than the current
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one. This is checked by comparing the time stamps for the current level to that of the next

coarser one. Also note that the synchronization step does not have to be done if it is going

to be done by a still coarser level that has been updated to the same time. Again, this is

checked by comparing time stamps.

If (` = 0 or told;` > told;`�1) then

Initialization from coarsest to �nest level at current time, levels `0 2 f`; : : : ; `maxg:

For `0 2 f`max � 1; : : : ; `g do

� I
`0;n
b := hI

`0+1;n
b i on P(�`0+1)

Enddo

Multilevel Solve: `0 2 f`; : : : ; `maxg

(Omit this computation if a valid solution is already available from the end of

the previous time step.)

� (
m � r)I`
0;n
m = �I

`0;n
b � (�+ �)I`

0;n
m + Sm(I

`0;n) on �`0 �P(�`0+1)

� I`
0;n
m = hI`

0+1;n
m i on P(@�`0+1), `0 < `max

End

For `0 2 f`; : : : ; `max � 1g do

� Derive (
m � r)Î`
0;n
m = �I

`0;n
b �(�+ �)Î`

0;n
m + Sm(Î

`0;n)�DR(
mÆI
`0+1;n
m ) on �`0

� ÆI`
0+1;n
m := hI`

0+1;n
m i � Î`

0;n
m on P(@�`0+1)

� _E`0+1;n :=
P

mwm�(hI
`0+1;n
m i � Î`

0;n
m ) on P(�`0+1)

� Compute (r � qr)
n using Î`

0;n
m
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Enddo

Endif

Time step, level `:

� Compute the predicted temperature T n+1;p by solving

�cp

0
@T n+1;p

ij � T n
ij

�t
+ (r � UT )n+

1=2
ij

1
A =

�

2

��
r2T

�n
ij
+
�
r2T

�n+1;p
ij

�

� (r � qr)
n + _E`0+1;n

� Using T n+1;p, solve

(
m � r)�I`;n+1m = �I
`;n+1
b � (�+ �)�I`;n+1m + Sm(�I

`;n+1)�DR(
mÆI
`+1;n
m ) on �`

� �I`;n+
1=2

m := 1=2(Î`;nm + �I`;n+1m )

� Compute (r � qr)
n+1 using �I`;n+1m

� Compute the corrected temperature T n+1 by solving

�cp

0
@T n+1;p

ij � T n
ij

�t
+ (r � UT )n+

1=2
ij

1
A =

�

2

��
r2T

�n
ij
+
�
r2T

�n+1;p
ij

�

�
1

2

�
(r � qr)

n + (r � qr)
n+1

�

+ _E`0+1;n

� Advance levels `+ 1; : : : ; `max.

� Æ �I`+1;n+
1=2

m := hh�I`+1m ii � �I`;n+
1=2

m on P(@�`+1)

If (` = 0 or tnew;` < tnew;`�1) then

Synchronization/reuxing, levels `0 2 f`; : : : ; `maxg:
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For `0 2 f`max � 1; : : : ; `g do

� I
`0;n+1
b := hI

`0+1;n+1
b i on P(�`0+1)

� Rn+1
m := �DR(
m(Æ �I

`0+1;n+1=2
m � ÆI`

0+1;n
m )) � (�t`

0

=�t`) on P(@�`0+1)

Enddo

Multilevel Solve: `0 2 f`; : : : ; `maxg

� (
m �r)~I
`0;n+1
m = �I

`0;n+1
b � (�+�)~I`

0;n+1
m +Sm(~I

`0;n+1)+Rn+1
m on �`0 �P(�`0+1)

� ~I`
0;n+1
m = h~I`

0+1;n+1
m i on P(@�`0+1), `0 < `max

End

Multilevel Solve: `0 2 f`; : : : ; `maxg

� (
m � r)I`
0;n+1
m = �I

`0;n+1
b � (�+ �)I`

0;n+1
m + Sm(I

`0;n+1) on �`0 �P(�`0+1)

� I`
0;n+1
m = hI`

0+1;n+1
m i on P(@�`0+1), `0 < `max

End

For `0 2 f`max � 1; : : : ; `g do

� (�cpT )
`0;n+1 := (�cpT )

`0;n+1 +�t`
P

mwm�(~I
`0;n+1
m � I`

0;n+1
m ) on �`0 �P(�`0+1)

� (�cpT )
`0;n+1 := h(�cpT )

`0+1;n+1i on P(�`0+1)

Enddo

� �I`;n+
1=2

m := �I`;n+
1=2

m + (~I`;n+1m � I`;n+1m ) on P(@�`), ` > 0

Endif

Note that the �nal enthalpy update can be written in the form

�cpT := �cpT +�t
X
m

wm((
m � r)~Im � (
m � r)Im � Rm): (16)
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The �rst two terms in the sum are uxes, and thus have no e�ect on global energy conser-

vation. The �nal term (Rm) undoes the failure to conserve energy due to the mismatch of

uxes at the coarse-�ne grid interfaces and the inclusion of the DR term in the level solve.

The composite solution ~In+1m does not have a clear physical interpretation. We are only

interested in its di�erence with In+1m , which we compute in this way to avoid problems with

the limiter. In the description above, there are three calls to the multilevel solver. As noted,

however, the �rst call is necessary only if the grid structure has been changed, rendering the

previous solution to Inm invalid.

Extensions to Variable Properties

The extension of the algorithm described above to allow for gravity, multiple species, kinetics,

compressibility, and variable density, thermal di�usivity, speci�c heat, and viscosity follows

the approach described in [10, 13]. Spatial and temporal variation of the absorption and

scattering coeÆcients are already accounted for in the description above. For multi-group

radiation, we consider only absorbing-emitting media. We follow the approach in [14]: each

band is solved separately and the contributions of the individual bands are summed. Each

band requires its own set of ux registers. This represents the only increase in memory

requirements over a gray gas approach.

Numerical Examples

In this section we present four numerical examples computed using the adaptive mesh algo-

rithm for unsteady, combined-mode heat transfer described above. We �rst show three sets
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of results to validate the algorithm: simultaneously developing axisymmetric pipe ow, si-

multaneously developing three-dimensional ow in a square duct, and, �nally, a shearing ow

in a closed box to demonstrate that the algorithm is conservative with a complex adaptive

grid structure. In the fourth example, we combine our algorithm with an adaptive algorithm

for unsteady low-Mach combustion [13] to compute a ickering laminar ame.

Except as noted, we make the following assumptions and strategies. The computational

cells are square and a Courant number of 0.5 is used. Physical properties are uniform

and constant in time within each example, and the ow is incompressible. The results

with radiation are obtained using the step approximation. We use an S6 ordinate set in a

convergence study and otherwise use S4. Both sets are tabulated in [15], and are chosen

because they have correct half-range �rst moments and therefore conserve energy at the

boundaries.

With respect to radiation, symmetry boundary conditions are used at ow exits, while

inlets are treated as nonreecting walls at the inow temperature. In all but the third

example, we assume black walls, i.e., � = 1. In the third example the walls are all perfect

di�use reectors (� = 0, � = 1), so the heat content of the box is constant in time.

Simultaneously Developing Laminar Pipe Flow

The �rst example is an axisymmetric computation of simultaneously developing laminar

ow in the entry region of a pipe. The initial and inlet axial velocities and temperature are

both uniform, u = u0 and T = T0, respectively. The temperature at the wall of the pipe is

T = Tw. We compute the ow on the domain 0 � r � R, 0 � x � L = :3RRePr = 8R.

For the results shown here, Re = 35:086, Pr = :76, N = 1, � = 1 and Tw=T0 = 1:5. The
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steady-state solution is found by timestepping until a time independent solution is achieved

(� � :55). We then compare this numerical solution with the steady-state boundary layer

solution obtained by Pearce and Emery [16].

We compute results for a uniform grid and �ve di�erent adaptive grid hierarchies. The

six cases, including the uniform grid case, are:

1) 64� 512 level 0 grid, `max = 0

2) 32� 256 level 0 grid, `max = 1, r0 = 2

3) 16� 128 level 0 grid, `max = 1, r0 = 4

4) 16� 128 level 0 grid, `max = 2, r0 = 2; r1 = 2

5) 8� 64 level 0 grid, `max = 2, r0 = 2; r1 = 4

6) 4� 32 level 0 grid, `max = 2, r0 = 4; r1 = 4.

The re�nement strategy in cases 2{6 is to tag all cells for which x=L < :0625 and those cells

for which x=L < :375 and :3 � (T � T0)=(Tw � T0) � :7. Note that with this strategy, the

grids change in time as the temperature solution evolves. Note also that if the re�nement

strategy were instead to re�ne everywhere, the �nest level would consist of a 64� 512 grid

covering the entire domain in all �ve adaptive cases. Fig. 1 compares the computed bulk

temperature at steady-state (� = :55) for case 6 with the Pearce-Emery results; the bulk

temperature curves for the other �ve cases are indistinguishable from the case 6 pro�le. Fig.

2 compares the computed Nusselt numbers (based on total heat ux at the pipe wall) for

cases 1, 4, 5, and 6 with the Pearce-Emery results; cases 2 and 3 are indistinguishable from

case 1. Fig. 3 shows a time history of the normalized temperature �eld for case 6. The

temperature and grid boundaries are displayed at � = :06875; :1375; :275 and :55.

The computed results and the Pearce-Emery predictions are in fairly good agreement.
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The computed Nusselt numbers show greater disagreement with the Pearce-Emery results

than the bulk temperatures. The di�erences may be due to the fact that Pearce and Emery

make two approximations which we do not. Speci�cally, in [16] the wall is considered to be an

in�nite tube at T = Tw, and axial temperature variations are neglected in the computation

of r � qrad. The Nusselt number pro�les for all six strategies are in close agreement with

one another except in the region where no re�nement occurs, i.e., (x=R)=RePr > :1125. In

other words, the discrepancies in the curves are due simply to di�erences in resolution in the

unre�ned region.

We now present timings of the code for the six gridding strategies. The calculations were

all run on a single 533 Mhz processor of a DEC Alpha workstation to a �nal time of � = :55.

Table 1 shows the CPU time used to complete the calculation, the CPU time per cell per

level timestep advance, the percentage CPU time for radiation, and the approximate peak

memory usage. We note that the average percentage of the domain re�ned to the �nest level

is roughly the same in each case | 22% for cases 2, 5, and 6, 25% for case 4, and 27% for

case 3.

The numbers in table 1 show that the adaptive mesh re�nement scheme can reduce the

computational cost in terms of both CPU time and memory usage. For this particular

problem and re�nement strategy, cases 4, 5, and 6 show the best reduction in computational

cost over the uniform grid calculation. In these cases, a substantially smaller proportion of

time (� 10%) was spent on multilevel solves than in cases 2 and 3 (� 20%) The comparative

advantage of the latter three cases is most likely due, then, to the fact that each uses relatively

less CPU time on multilevel solves, which is in turn due to the use of one or more re�nement

ratios of 4. The AMR timestepping scheme requires two multilevel solves for every r �ne
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time steps, so the overhead due to multilevel solves is smaller for cases 4, 5 and 6 than for

cases 2 and 3.

We �nally show results to con�rm that the algorithm is spatially and temporally second

order accurate. The MINMOD scheme is used here [17, 18] instead of the step scheme

because the latter is only �rst order accurate. We compute solutions on 4 � 32, 8 � 64,

16� 128, and 32� 256 uniform grids. The errors in the solution on the three coarser grids

are computed at � = :06875; :1375; :275, and .55. Because there is no exact solution, we

estimate the error in the numerical solution by comparing solutions at successive resolutions.

We �rst compute the error eij in a single coarse grid computational cell as the di�erence of

the coarse grid result and the average of the solution in the overlying �ne grid cells. The L1

error on the entire coarse domain (assuming �x = �y) is then de�ned by

L�x
1 =

X
ij

(�x)2eij:

The convergence rate q can then be computed by comparing errors at successive resolutions:

q = log2
�
L2�x
1 =L�x

1

�
:

The errors and convergence rates are shown in table 2. The results show that the numerical

algorithm is second-order accurate for this problem.

Simultaneously Developing Three-Dimensional Duct Flow

The second example is a three-dimensional calculation of simultaneously developing laminar

ow in the entry region of a square duct. The initial and inlet axial velocities and temperature

are both uniform, u = u0 and T = T0, respectively. The temperature at the wall of the pipe

is T = Tw. We compute the ow on the domain 0 � y, z � R, 0 � x � L = :6RRePr = 42R.

25



Symmetry boundary conditions are used at y = 0 and z = 0. For the results shown here,

Re = 100, Pr = :7, N = 100, � = 2, and T0=Tw = :1. The steady-state solution is found by

timestepping until a time independent solution is reached (� � :6745). We then compare this

numerical solution with a computation by a steady-state code implementing the algorithms

in [15, 1].

We compute results for the following four cases:

1) 16� 16� 672 level 0 grid, `max = 0

2) 8� 8� 336 level 0 grid, `max = 1, r0 = 2

3) 4� 8� 168 level 0 grid, `max = 1, r0 = 4

4) 4� 4� 168 level 0 grid, `max = 2, r0 = 2; r1 = 2

The re�nement strategy in cases 2{4 is to tag all cells for which x=L < :07143. Fig. 4

compares the computed results at steady-state (� = :6745) for case 4 with results computed

by the steady-state code described in [15, 1]; the bulk temperature pro�les for the other three

cases are indistinguishable from the case 4 curve. The results computed using the algorithm

described here and the steady-state code agree fairly well.

We now present timings for these four cases. The calculations were all run on a single

300 Mhz processor of a DEC Alpha workstation to a �nal time of � = :6745. The average

percentage of the domain re�ned to the �nest level is 7 � 1% for cases 2-4. Table 3 shows

the same �elds shown in table 1. The results in table 3 again show a reduction in compu-

tational cost when adaptive mesh re�nement is used. Case 4 shows the best reduction in

computational cost over the uniform grid calculation. As in the case of the simultaneously

developing pipe ow example, the comparative advantage of case 4 is probably due to the

use of a re�nement ratio of 4. However, the reduction in cost from using r = 4 is not as
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great in three dimensions as it is in two.

Conservation Test: Shearing Flow in a Box

In this example we consider an idealized ow in a closed unit box with reecting walls

(� = 0, � = 1), to con�rm that the algorithm conserves energy even when the grid structure

is complex and changes with time, scattering is present, and the absorption coeÆcient is

nonuniform. The initial velocities are

u = � sin2(�x) sin(2�y)

v = sin2(�y) sin(2�x)

with slip-wall boundary conditions. The walls are adiabatic. Viscosity and conduction are

set to 0, while � and cp are constant. Temperature is initialized to T0 except for a hot region

of temperature 8=3T0, centered at (0.75, 0.25) and with radius 0.1.

The absorption coeÆcient � is �0 throughout the domain, except for a disk of radius

0:1 at the center of the box where � = 50�0. The base grid is 32 � 32, with two levels

of re�nement by factors of 2 and 4. The grid is re�ned either where � = 50�0 or where a

marker for the uid in the initial hot region is present. Figure 5 shows the temperature �eld

at timesteps 0, 10 and 100 with no scattering, and at timestep 10 with a uniform scattering

coeÆcient � = 10�0. The main e�ect of scattering is the elimination of ray e�ects present

in the results for absorption only.

As there is no heat transfer through the walls, the integral of enthalpy over the domain

should be constant in time. In the experiment this quantity remained constant to 8 decimal

places, with or without scattering. This precision is slightly better than expected, since
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the relative tolerance required for convergence of the radiation solutions was 10�7, and the

ordinates were taken from a table with only 7 decimal places.

Flickering Laminar Methane-Air Di�usion Flame

Accounting for radiative heat transfer in the modeling of laminar ames has been shown

to be important [19, 20, 21]. In this last example we combine our adaptive combined-mode

heat transfer algorithmwith an adaptive algorithm for unsteady low-Mach combustion [13] to

perform an axisymmetric computation of a ickering, uncon�ned methane-air di�usion ame.

The computation models the coannular burner used by Smyth et al. [22] in a experimental

ame study. They report results that include the e�ect of acoustic forcing [22] and those that

do not [23]. The latter case is the one computed here. Yam et al. [24] have also simulated

this ow using a single grid projection method.

The burner consists of a fuel inlet with a radius of .55 cm surrounded by an annulus

of coowing air with an outer radius of 5.1 cm. The velocity of both inlet streams is 7.9

cm/sec. The ow develops as follows. Initially, the ame grows in length and oscillates in

a non-periodic manner. After a short time, the ame reaches a \steady-state" in which it

exhibits a periodic oscillatory behavior best described as ickering. The ame oscillations

are caused by a buoyancy-induced Kelvin-Helmholtz type of instability.

We simulate this ame using a low-Mach number model for combustion which accounts

for compressibility. We consider the gas to be composed of three species (methane, air, and

product) and use a one-step kinetics mechanism. Properties are governed by temperature

correlations. We assume a unity Lewis number and use a Prandtl number of .75. We refer

the reader to [13] for further details.
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We consider �ve cases, one in which radiative heat transfer is not accounted for and four

with radiative transfer using di�erent models for radiative properties:

1) no radiative heat transfer

2) constant absorption coeÆcient, � = 1:0 m�1

3) constant absorption coeÆcient, � = 1:5 m�1

4) wide-band weighted-sum-of-grey-gases (WBW) model with three bands [25]

5) wide-band weighted-sum-of-grey-gases (WBW) model with four bands [25].

In cases 4 and 5, we assume that the combustion product contains 18% H2O , 8.5% CO2, and

.9% CO. We use a 16�64 level 0 grid to cover the domain 0 � r � 6:4 cm; 0 � z � 25:6 cm.

There are three additional levels of re�nement. The re�nement ratio r` = 2 for ` = 0; 1; 2,

so that the equivalent uniform grid is 128 � 512. The inlet boundaries are re�ned to level

3, the region T > 1800 K is re�ned to level 2, and the region in which the magnitude of

the vorticity exceeds 50 sec�1 is re�ned to level 1. We use a Courant number of .4. All the

computed ames establish periodic ickering by t = 1:5 sec.

For each computed ame, we �nd the maximum temperature and compute the ickering

frequency and the time-averaged ame length by using the complete ickering cycles (mea-

sured peak length to peak length) between t = 1:5 sec and t = 3:0 sec. These values are

reported in table 4 for all �ve cases. A time history of the ame length for case 5 is shown in

�gure 6 and the temperature �eld for that case during a single ame oscillation is displayed

in �gure 7.

The values for cases 2{5 with radiation do not di�er signi�cantly with one another. They

all exhibit a roughly 100 K decrease in peak ame temperature, a slight decrease in average

ame length, and an slight increase in ickering frequency compared to case 1. The decrease
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in ame temperature is consistent with results reported elsewhere [19, 20, 21]. The decrease

in ame length and and increase in ickering frequency can probably be attributed to a

decrease in buoyancy. For comparison, Smyth et al. report a ickering frequency of 12� :5

Hz [23] and an average ame height of 7.9 cm. (The ame height they report is the axial

location of the end of the soot burnout region, which is typically beyond the maximum

temperature location we use to de�ne ame length [26].) Smyth does not report ame

temperatures; Yam et al. compute a maximum ame temperature of roughly 1950 K.

Table 5 reports the CPU time per cell per level timestep advance for radiation and the

total memory usage for all �ve cases. As expected, the CPU time spent on radiation modeling

is roughly proportional to the number of bands. However, the peak memory usage increases

much less dramatically. This is due to fact that the only additional data structure required

for each new band is a set of ux registers.

Conclusions

We have presented a conservative, adaptive mesh algorithm for unsteady, combined mode

heat transfer. The algorithm couples a new scheme for the modeling of unsteady radiative

transport on locally re�ned meshes with an adaptive projection method for incompress-

ible ow. This radiative transport scheme is itself based on a discrete ordinates algorithm

for instantaneous radiative heat transfer on locally re�ned meshes. The methodology also

incorporates a predictor-corrector formulation for second-order temporal accuracy.

The algorithm has been implemented and validated in two and three dimensions. The

examples presented here demonstrate that the adaptive algorithm can compute accurate,
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energy conserving solutions while showing a signi�cant reduction in CPU and memory usage

over an uniform grid calculation. The results also show that the scheme is second-order

accurate in time and space if a second-order discretization of the RTE is used.

We have presented results for laminar ows only. Hence, in future work, we will inves-

tigate the issues in computing turbulent ows with radiative transport using the method

described here. We will also extend the incorporation of our methodology with an adaptive

projection method for unsteady low-Mach number combustion [13]. Finally, we will further

investigate the use of bounded, high-resolution di�erencing schemes [18] for the discrete-

ordinates equations on locally re�ned meshes.
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Gridding CPU Time % CPU Time Peak

for Memory

Radiation Usage

Level 0 grid `max r Total(s) �s/cell Mb

1) 64� 512 0 16790. 282. 15.1 29

2) 32� 256 1 2 10330. 490. 21.8 17

3) 16� 128 2 2,2 7958. 480. 18.6 16

4) 16� 128 1 4 4849. 322. 14.9 14

5) 8� 64 2 2,4 5167. 359. 12.3 14

6) 4� 32 2 4,4 4883. 338. 12.9 14

Table 1: Timings for uniform grid and re�ned grid calculations on a single processor of a

533 MHz DEC Alpha workstation for the simultaneously developing pipe ow example.
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� 4� 32 q 8� 64 q 16� 128

.06875 8:755� 10�3 2.11 2:031� 10�3 2.02 5:010� 10�4

.1375 4:466� 10�3 2.01 1:108� 10�3 2.07 2:643� 10�4

.275 3:598� 10�3 1.93 9:432� 10�4 2.05 2:274� 10�4

.55 3:912� 10�3 1.93 1:024� 10�3 2.06 2:458� 10�4

Table 2: Normalized L1 errors and convergence rates for the simultaneously developing pipe

ow example.
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Gridding CPU Time % CPU Time Peak

for Memory

Radiation Usage

Level 0 grid `max r Total(s) �s/cell Mb

1) 16� 16� 672 0 191500. 748. 44.1 144

2) 8� 8� 336 1 2 53470. 1491. 55.3 36

3) 4� 4� 168 2 2,2 23120. 1073. 51.5 22

4) 4� 4� 168 1 4 18000. 857. 43.6 22

Table 3: Timings for uniform grid and re�ned grid calculations on a single processor of a

300 MHz DEC Alpha workstation for the simultaneously developing three-dimensional ow

through a square duct example.
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Radiative Flickering Flame Maximum Flame

Properties Frequency (sec�1) Length (cm) Temperature (K)

1) no radiation 11.97 6.57 2190

2) � = 1:0 m�1 12.25 6.08 2074

3) � = 1:5 m�1 12.36 5.97 2058

4) 3-band WBW 12.24 6.10 2057

5) 4-band WBW 12.06 6.28 2065

Table 4: Comparison of results for the ickering ame example.
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Radiative CPU Time Peak Memory

Properties for Radiation Usage

(�s/cell) (Mb)

1) no radiation | 13

2) � = 1:0 m�1 192 14

3) � = 1:5 m�1 196 14

4) 3-band WBW 575 14

5) 4-band WBW 796 15

Table 5: Timings on a single processor of a 533 MHz DEC Alpha workstation for the ickering

ame example.
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Figure captions

Figure 1. Comparison of computed bulk temperature for case 6 of the simultaneously

developing pipe ow example with the Pearce-Emery solution.

Figure 2. Comparison of computed Nusselt numbers for cases 1, 4, 5, and 6 of the

simultaneously developing pipe ow example with the Pearce-Emery solution.

Figure 3. Computed normalized temperature (T�T0)=(Tw�T0) at � = :06875; :1375; :275;

and :55 for case 6 of the simultaneously developing pipe ow example. The boundaries of

the level 1 and 2 grids are shown as thin lines.

Figure 4. Comparison of the bulk temperature for case 4 of the simultaneously developing

three-dimensional ow through a square duct example with the solution from the steady-

state code described in [15, 1].

Figure 5. Evolution of an o�-center hot spot in a spinning ow in a box with a central

absorbing region. In the �rst three frames there is no scattering. The last frame (bottom

right) shows the same calculation with scattering at the same time as the upper right frame.

Figure 6. Axial position of the maximum temperature of the ickering ame along the

centerline axis as a function of time for case 5.

Figure 7. Temperature �eld of ickering ame during a single ame oscillation for case

5. The boundaries of the level 1, 2, and 3 grids are shown as thin lines in the plots.
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Figure 1: Comparison of the bulk temperature for case 6 of the simultaneously developing

pipe ow example with the Pearce-Emery solution.
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Figure 2: Comparison of the Nusselt number for cases 1, 4, 5, and 6 of the simultaneously

developing pipe ow example with the Pearce-Emery solution.
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Figure 3: Computed normalized temperature (T �T0)=(Tw�T0) at � = :06875; :1375; :275;

and :55 for case 6 of the simultaneously developing pipe ow example. The boundaries of

the level 1 and 2 grids are shown as thin lines.
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Figure 4: Comparison of the bulk temperature for case 4 of the simultaneously developing

three-dimensional ow through a square duct example with the solution from the steady-

state code described in [15, 1].
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Figure 5: Evolution of an o�-center hot spot in a spinning ow in a box with a central

absorbing region. In the �rst three frames there is no scattering. The last frame (bottom

right) shows the same calculation with scattering at the same time as the upper right frame.
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Figure 6: Axial position of the maximum temperature of the ickering ame along the

centerline axis as a function of time for case 5.
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Figure 7: Temperature �eld of ickering ame during a single ame oscillation for case 5.

The boundaries of the level 1, 2, and 3 grids are shown as thin lines in the plots.
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